CURVE ESTIMATION (maksimal 5 variabel independen)
https://i.ytimg.com/vi/ftky6b_MQkg/default.jpg
The Curve Estimation procedure produces curve estimation regression statistics and related plots for 11 different curve estimation regression models. A separate model is produced for each dependent variable. You can also save predicted values, residuals, and prediction intervals as new variables.
Example. An Internet service provider tracks the percentage of virus-infected e-mail traffic on its networks over time. A scatterplot reveals that the relationship is nonlinear. You might fit a quadratic or cubic model to the data and check the validity of assumptions and the goodness of fit of the model.
Statistics. For each model: regression coefficients, multiple R, R 2, adjusted R 2, standard error of the estimate, analysis-of-variance table, predicted values, residuals, and prediction intervals. Models: linear, logarithmic, inverse, quadratic, cubic, power, compound, S-curve, logistic, growth, and exponential.
Curve Estimation Data Considerations
Data. The dependent and independent variables should be quantitative. If you select Time from the active dataset as the independent variable (instead of selecting a variable), the Curve Estimation procedure generates a time variable where the length of time between cases is uniform. If Time is selected, the dependent variable should be a time-series measure. Time-series analysis requires a data file structure in which each case (row) represents a set of observations at a different time and the length of time between cases is uniform.
Assumptions. Screen your data graphically to determine how the independent and dependent variables are related (linearly, exponentially, etc.). The residuals of a good model should be randomly distributed and normal. If a linear model is used, the following assumptions should be met: For each value of the independent variable, the distribution of the dependent variable must be normal. The variance of the distribution of the dependent variable should be constant for all values of the independent variable. The relationship between the dependent variable and the independent variable should be linear, and all observations should be independent.
Posting Komentar
Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.